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Introduction 

Like many an intriguing question in algebraic manipu- 
lation, the problem of denesting nested radicals had its 
origins with Ramanujan. That is not to say that no one 
had ever considered the problem of denesting radicals 
before he did. Certainly, the fact that 

~/5 + 2v~ = v ~ +  v~ 

is simple enough that it must have been known several 
centuries ago. Ramanujan [11] upped the ante. For each 
of the formulas below, he took the doubly nested radical 
on the left and simplified it to a combination of singly 
nested radicals on the right: 

~ / T ~ - I  = ~ -  Xy2-~+ ~/'4-/9, 

v/xY-5 - if4 = (1/3)(xY2+ ~ - 0 -  xY~), 

~ / /7 f f~ -  19 = ~ ' ~ -  ~27-3, 

~ / 7 7 - ~  4/g+ 1 

V - 

~ / ~ / ~ -  ~ = (1/3)(~9-8-  xY~ - 1), 

~ / ~ - ~ / 2 - ~ - - 5  = ~ +  ~ -  ~9-/25. 

What Ramanujan neglected to do was provide a theory 
for simplifying nested radicals. When computers came 
along, symbolic computation became important. There 
was a practical reason to find an algorithm for denesting 
nested radicals. 

A machine has no problem with 

1, V/5 + 2v~, 5 + 2v~, (5 + 2x/6) 3/2 

as a basis for Q(v/5 + 2v~) over Q. Most human beings 
seem to prefer the basis 

1, x/2, v~, v/6. 

The difficulty is that there was no general method to go 
from the complex form of a nested radical to a simplified 
version. If Ramanujan had one, he never wrote it down. 

Necessity has often been the mother of invention, and 
so it proved to be in this case. Although the general prob- 

lem remains open, there are now solutions to a number 
of subproblems: for denesting real nested square roots 
[3], for denesting real radicals of depth 2 [5], for radi- 
cals of a special form [9, 13], and for radicals using roots 
of unity [7, 8]. I am interested in three questions: When 
does a simplification exist? Is there a technique for find- 
ing it? How long does it take? In this article, I will briefly 
present some recent theorems for radical simplification, 
and the algorithms they lead to. For proofs, and complete 
presentations, the reader is urged to read the original 
papers. 

What D o e s  It Mean to Denes t  a Radical? 1 

I begin by making precise what is meant by simplifying 
a nested radical. Assume all fields are characteristic 0. In 
defining the depth of nesting of a formula, I will view the 
formula as a sequence of formal symbols. Following [3], 
a formula over a field k and its depth of nesting are defined 
recursively: 

�9 An element in the field k is a formula of depth 0 over 
k. Thus, 17 is of depth 0 over Q, while I + v~  is of depth 
0 over Q(v~). 

1 This brief overview is taken from [8]. A more  detailed d iscuss ion  of 
these i ssues  can be found  in [7]. 
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�9 An arithmetic combination (A -4- B, A x B, A/B)  
of formulas A and B is a formula whose  depth  
over k is max(depth(A),  depth(B)). Because I view 

V/5 + 2 v ~  - v '2  - x/3 as a sequence of formal sym- 
bols, it has nesting depth 2 over Q. 

�9 A root ~/A of a formula A is a formula whose  depth 
over k is 1+ depth(A). 

�9 Finally, V / V ~ +  2v/-6 has depth 3 over Q. 

Such a formula is called a nested radical. A nesting of a 
means any formula A that can take c~ as a value. But there 
are difficulties involved as an nth root is a mult ivalued 
function. When I write the equation 

V/5 + 2v~  = v ~ +  v~,  

it is unclear which v ~  I mean and which V~. The usual 
interpretation is the positive real roots for all four choices 
in the equation above. Under  those choices, the equation 
is correct; under  others, it may  not be. 

I start with the input  as a sequence of expressions of 
the form: 

al = n,y-q, q E k, 

f t  2 ~ 

O~2 = ~ ) ,  P2 E ]~[Xl], 

Ol3 = nv/p3(oL1, O~2), P3 e k [ X l ,  x21, 

Ctrn = q ( o o , . . . , O ~ r n - 1 ) - t -  n m v / P m ( ( ~ l , . . . , O ~ m - 1 ) ,  

q and 16r~ E k [ x l , . . . ,  X m - 1 ]  and a = am. 

It is not hard to go from this complicated sequence to 
the minimal polynomial  for a over k. One can do it by 
first determining a minimal polynomial  for a~ over k, 
then using that to determine a minimal polynomial  for 
a2 over k, and so on (see [81 for details). One must  take 
careful note of the choices of roots as they are made. 

Once one chooses a particular nth root for ~/-~, the 
same value must  be assigned to it each t ime it appears. If 
the roots are specified at the time a nested radical is given, 
choose those roots. Whenever  roots appear  which have 
not been previously specified; one is free to pick a value 
arbitrarily for them, so long as after that one consistently 
chooses the same value to represent the root. 

Suppose one is interested in denest ing the expression 

~ - 1 -  ~/1--/9. 

The polynomial  x 3 -- 9 factors over the field Q(~ /q~  - 1). 

To denest ~ 1 - ~ / ~ ,  I need to know to which root 

of x 3 - 9 1 am referring in Q(~/,Y2 - 1): the one which 
satisfies x - c~ 8 - 4c~ s - 4oL 2, or one of the two satisfying 

X 2 q- (O~ 8 -4- 4c~ s + 4oL2)x q- (3o~ 4 -4- 6a), where  c~ = ~ - 1. 
For the purposes  of this paper, I have chosen that when  

I adjoin ~/~, I do so in a way that makes the smallest (in 
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terms of degree) field extension possible. In the above 
example,  I would choose the ~ that is already in the 
field. 

I will say the formula A can be denested over the field k 
if there is a formula B of lower depth  than A such that A 
and B have the same (real or complex) value. I will say 
that A can be denested in the field L if there is a formula  
B of lower nesting depth  than A with all of the terms 
(subexpressions) of B lying in L, again with A and B 
having the same value. For any c~, I define the dep th  of c~ 
over  k to be the depth  of the min imum-dep th  expression 
for c~. When  I am given a formula A for c~ such that A can 
be denested,  I will sometimes say that c~ can be denested.  

For the remainder  of this article I will assume that c~ 
has been given by its minimal polynomial  over k, and 
the choice of roots in any ambiguous  situation has been 
spelled out. 

Denesting Real Nested Radicals 

Real nested radicals were Ramanujan's  examples and 
form a clear starting point for the problem. Nested square 
roots form the simplest example of nested radicals. Since 
nested real square roots describe the Euclidean distance 
from one vertex on a po lyhedron  to another, an algori thm 
for their simplification is potentially of practical value. 
With such concerns in mind,  Borodin, Fagin, Hopcroft ,  
and Tompa [3] studied simplifying nested square roots. 
Their first result demonstrates  when  square roots suffice 
for denesting: 

T H E O R E M  1 [3]. Let Q c_ k, and let a, b, r be elements of 
k,  with v /r  not in k. The the following are equivalent: 

1. x /a  + bv/F is in k(v/-r, v/-6T,..., v ~ )  for some 
al, �9 �9 �9 al in k. 

2. x /a  + bv/-F is in k(v G, v~)  for some s # 0 in k. 
3. x/a 2 - b2r is in k. 

Next  they gave the conditions under  which fourth 
roots may  help: 

T H E O R E M  2 [3]. Let Q c_ k, and let a, b, r be in k,  with v'7 
not in k. Then the following are equivalent: 

1. x/'a + bx/-r is in k(,~/r, v r ~ , . . . ,  v ~ )  for some 
a l  ~ �9 �9 �9 , a l  in k. 

2. Either 4 / - rv~x/a  + bv'-r or v ~ v / a  + b v ~  is in k ( v ~ ) ,  
for some s # 0 in k 

3. Either V/r(bar - a 2) or v / ~  - b2v is in k. 

Finally, they showed that, for denesting expressions 
containing only real square roots, only square roots or 
fourth roots play a role: 

T H E O R E M  3 [3]. Let k be a real extension of Q, and let a, b, v 
be in k with v /r  not in k. Let nl  , . . . , nl >_ 1,and let al , . . . , az 

in k be positive. If  ~ b v ~  is in k(~x/h-~,..., =~/-~), then 

x/-d-~ b v ~  is in k( 4/F, v/-~, . . . , v ~ )  for some pl,  . . . ,PL 
in k. 



In combination, these three theorems provide  the back- 
bone for an algori thm for denesting real nested square 
roots. Let r0 be in Q, and inductively let r~ = ai + b~ rv/-FTL-(~_l, 
with ai and bi in Q(ri-1) for i = 1 , . . .  ,n. Consider  the 
following tower of fields: 

ko = Q, and for all i _> 0, ki+l = k i ( v ~ ) ,  where  ri C ki. 

There are two ways  v ~  can denest using only square 
roots. One is that ~ may  denest. The other is that 
there is a field K satisfying the following (i) it contains 
a, b, rn-1, (ii) it contains only elements of dep th  n -  1, and 
(iii) a 2 - b 2 r n _ l  is  a square. 

To find the field K in which these conditions are sat- 
isfied, I a t tempt  to denest  via 2 - b2rn_l. If this is accom- 

plished, I will have found a field k in which all elements 
have depth  at most  n - 2. I will also have found an ele- 

ment  s such that via 2 - b2rn_l is in ]~(v~, r~/GC~_2). Then 
K = ]r ~, rv/-G-~_2 ). This idea leads to a recursive algo- 
rithm. If one is careful with the input and output ,  the 
running time of this algori thm is polynomial.  

But this tells us only  how to handle a nested square 
root which consists of roots recursively formed by ri = 
ai + bi rv/-ff(~,-1, with ai and bi in Q(ri-1) for i = 1 , . . .  ,n, 
and ro in Q. If we want  to denest all real nested square 
roots, we have to be able to handle linear combinations 
of nested square roots. I look first at the simpler case, in 
which none of the radicals is nested. 

THEOREM 4 (Besicovitch [2]). Let {ei} denote the set of 
n I radicals, 

~/ppipT2 m, ""Pz , O < m i K n ,  1 < i < / ,  

where p l , . . .  ,pz are the first l primes. Then the set {ei} is 
linearly independent over Q. 

To check if a linear combination of square roots is equal 
to zero, one needs only to check if it is trivially equal to 
zero. There is the obvious solution of factoring all the 
integers under  the square root sign in order  to check if 
pieces cancel, but  this is far from optimal. A much  faster 
way  to do the problem is to compute  gcd's of the integers 
under  the square root  signs. Then where  appropriate,  
pull out squares f rom unde r  the radical signs. Combine 
like terms. Repeat until  no further simplification is pos- 
sible. If there is anyth ing  left, then the combination of 
square roots is different f rom 0. 

One can implement  a more  complex version of this 
idea to simplify linear combinations of nested square 
roots. Borodin, et al. [3] consider the case where  k is 
a real extension of Q, and where li, ai, bi, and v ~  are 

in k for i 1 , . . . ,  h. Suppose h = Ei=I  liv/ai + b i v ~  den- 
ests in k. They find the denest ing as follows. First denest  
any single radical that can be denested using the criteria 
of Theorem 3. Next  consider each pair of nested rad- 
icals, v/ai + biv'~, v/aj-4-bjv ~ ,  and see if the prod- 
uct denests. Suppose  it is equal to m in k. Replace 

liv/ai + biv"~ +l jv /a j  + b j v ' ~ b y  [ l i+mlj / (ai+bix/~)] .  
v /a i+  biv/~ in k(v/ai + bix/7~). Iterate the process of 
looking for a pair of radicals that denests. If at any point  
the product  of any pair of radicals cannot be further den- 
ested, then the combination of nested radicals cannot be 
further  denested. 

Earlier Siegel had studied a more general situation 
than square roots. Assume that F is an arbitrary real field, 
and let r l , .  �9 . , Vk be natural numbers.  Let ql,. �9 �9 qk be el- 
ements of F,  with ~ - ~ , . . . ,  T~/~ real. Siegel introduced 
the multiplicative groups generated by the nonzero ele- 
ments  of F and the first i radicals {~x/~, �9 �9 �9 ~x/~}, which 

he denoted  by F (i). Let r~ be the group index of F (i 1) in 
r (i). Then Siegel showed: 

T HE ORE M  5 [12]. With notation as above, the degree of the 
field extension F( ~x/-~, " " , "~/~) equals I-Ik=l r~. Thus, the 
basis of the extension is given by 

k 

- I  ~ r O<e i_<  ' - 1 ,  i = 1  k. 
i=1 

In seeking an algorithm for simplifying sums of radi- 
cals. B16mer recast this as 

COROLLARY 6 [4]. Let S = y~ik=l 3"i "~x/~i, where the r~ are 
natural numbers, and 3"i, fli are in F with ' ~  real. Assume 
that there is no pair of indices (i, j ) , i r d, with ~ / ~  / " ;v/~ c 
F. Then S is in F if and only if there exists at most one "yi r O. 
In this case, ~x/~i is in F. That is, arbitrary real radicals ~x/~ 
are linearly dependent over F if and only if there are already 
two radicals ~r ~ ' - ~  that are linearly dependent over F. 

This gives an easy algori thm to check if a sum of rad- 
icals over  a field Q(a)  is in Q(a).  Let F = Q(c 0 be an 

k algebraic number  field, let S = Y~i=l 3'i ' ~ ,  and let 
R = { "~v~, �9 �9 -, T~/~-}, where the fli are in F. To show 
that "~x/~/~Ffi~ is in F,  it is sufficient to show that 

1. T~v/-fil = fl~ E F,  

2. qv/-fi2= fl~ E F, 
r l  I l r l  ! 3. F, 

= ' = r 2 / r .  If  F = Q where r = gcd(r l ,  r2) and ri r l lr ,  r 2 
and q = zl/z2, with gcd(zl,  z2) = 1, clearly ~ is in Q 
if and only if ~ -  and ~ /~  are in Z. B16mer uses loga- 
rithms to compute  an approximation to 4/-~, which is then 
checked to see if it is an r th  root of z. If F ~ Q, B16mer 
[4] gives a Monte Carlo 2 algori thm with error probability 
2 - t  which, given a, fl, and 3', decides in time polynomial  
in log r whether  there is a 3' in Q(a)  that satisfies 3'~' = ft. 
He does this by checking whether  3  ̀ is an r th  root of 
fl modulo  T distinct primes which are randomly chosen 

2 Monte Carlo and Las Vegas methods are the most common types of 

probabilistic algorithms used in computer  science. The running time 
is polynomial in Monte Carlo algorithms, with an exponentially small 
chance of failure. Las Vegas algorithms always produce the correct 
answer  with a polynomial expected running time. 
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from the interval [0, 2T], where T is a polynomial  in 
log r, the input size of fl, and t. B16mer's technique also 
explains the denestings of the radicals at the beginning 
of this article. 

Call depth 2 nested real radicals "Ramanujan Radi- 
cals." Building on Theorem 5, B16mer proved 

THEOREM 7 [5]. Let F be a real field, and F'  = 
F(  r~v/~,. . . , r~/-~) be a real radical extension of F of degree 
r. Let 3" be in F' ,  and let s be a natural number. Assume that 
~/~ is real and denests over F. Then there is a nonzero ~1 in F 
such that ~'-q ~/~ is in F' .  

Consider the field embeddings aj of F(  r~v/-fi~,..., 
r~rfi-~) in its splitting field over F. Let (~ be a primitive 

r~th root of unity, where  r~ is the group index of F (i-1) in 
' The field embeddings  aj are given F (~). Let 0 < fi _< r~. 

by 

aj : F(  ~V'~I,.. .  r ~ k )  --* F rrf' Ik , , ,r;  , r % G )  

Then 

THEOREM 8. Assume ~/~ denests as above. Let {fli} 
be a basis of F '  over F. Then for some basis element 

r 
fli, Y ~ j = l c r j ( f l i ) ~ ( 3 " )  is a nonzero element of F and 

[ ~ = 1  aj (fli) ~ j  (3')]-~ denests ~ .  

If we  l e t ,  = [~d=l aj (fli)( ~ / ~  ( '7))]-~, then ~/denests 
~,'-~, that is, ~xY'-~xY-~ = 3" E F' .  The value of this theorem 
is that in bounding  ~1, it tells us where to search for a 
denesting. 

Let us consider the simplest possible case, a Ra- 
manujan Radical. The base field F = Q, and F '  = 
Q( ~'x/~, '" ,  ~ k - )  with ri ~ N and qi ~ Q. Interpret 
~ to be the real ri th root. I wish to denest  9r~, where 

3" = Y~i~l difli, and the {fli} form the basis of F' over F,  
and the di are in Q. Without loss of generality, one can 
assume that the di and qj are all integers, that is, that 3' 
is an algebraic integer. 

If 3' is an algebraic integer, so is a3(3" ~) for each 
j .  Furthermore, (a3(3'~)) - ~  is one of the rs roots of 
cr3(3'r). Thus, (a j (3 ' r ) ) -~  is an algebraic integer, and so 
is [Y~=I aj(fli)~,/-~ (3')]-~, and fli is an element of any 
basis for F'  over F for which fl~3'~ has nonzero trace. As 
before, B16mer employs  the idea of comput ing logs and 
lattice reduction to compute  ~. 

If the sum denests,  Theorem 8 tells us how. This de- 
nesting will have depth  1, that is, it will be a sum of 
radicals. We can easily check whether  this sum is actu- 
ally in Q or not. Thus, Theorem 8 leads to an algorithm 
for completely denesting Ramanujan Radicals. Note  that 
Bl6mer's technique guarantees a minimal-depth solu- 
tion only for the depth  2 case, Ramanujan Radicals. 
Bl6mer also has a nice solution to the question of sums 
of nested radicals: 

k THEOREM 9 [5]. Suppose S = ~i=~ fl~ ~x/~ is a sum of 
real nested radicals such that 3"~ is in F~, fli ~ Li, i = 1 , . . . ,  k, 
where each F~, Li is a real radical extension of F ,  a subfield of 
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the reals of degree ri, ti, respectively. Assume that no nested 
radical "~x/-~ denests using real radicals. Then 
1. S can denest only to 0; 
2. if no quotient ~v~*/ r~ ,~  denests, then S = 0 if and only 

if fli = O for all i. 
This gives a polynomial-t ime algorithm to determine 

whether  the sum of nested real radicals is equal to zero. 

A P a r t i c u l a r l y  S i m p l e  F o r m  o f  D e n e s t i n g  

Zippel  studied the equation 

and found the beginnings of a pattern. Whereas ~ - 1 

is not a cube in Q(xY2), 9(x~ - 1) is. I can find a 3' which 
satisfies 3 '3  = 9 ( ~ r 2  __ 1 ) in Q(~Y2) by factoring X 3 - -  9 ( ~ / 2  - -  

1) over Q(xY2). Namely, 

X 3 - -  9 ( X ~  - -  1 )  

= ( x - ( 1 - ~ / 2 + ~ / 4 ) ) ( x 2 + ( 1 - ~ / 2 + ~ / - 4 ) x + 3 ~ ' 4 - 3 ) .  

The first factor gives Ramanujan 's  denesting. 
Zippel  noticed that a similar situation arises with 5 + 

2v~. Again, this is not a square in Q (x/-6), but  a multiple 
of it, 2(5 + 2v~),  is. Our task is to find 3', where 3'),2 __ 

2(5 + 2v~)  in Q(v~).  We discover 

X 2 - -  2(5 + v~) = (x - (2 + V'-6))(x - (-2 - v~)). 

In both cases, we have found an element fl in Q such 

that, al though r  is not an element of Q(O), ~ is. We 
have the following picture: 

L = K(r = K F  

k = K N F  

In each case, expressions of nesting depth n in the field L 
have been dropped  to expressions of nesting depth  n - ,  
in the subfield L. This idea generalizes to a theorem: 

T H E O R E M  10 (Zippel [,3]3). Assume K is an extension 
of k, a field containing a primitive dth root of unity. Let L = 
K(~'-d) be an extension o[ degree d, where a is in K .  If there 
is a field F which is a Galois extension of k = K N F,  and 
L = K F ,  then there is a fl in k such that aft  is a dth power of 
an element of k. Furthermore, F = k(r 

Zippel  exploited some lucky guesses. If I want  an al- 
gorithm, I will need something somewhat  more deter- 
ministic than that. I will need an algorithm to determine 
whether  such a fl exists, and if so, how to find it. More pre- 
cisely, given ~ in L, when is there a solution to aft = 3"d 

3 Zippel's original statement omitted, but implicitly assumed, the hy- 
pothesis that F is a Galois extension of k. A corrected version appears 
in [9]. 



with fl in k, a proper  subfield of k(~r~), and ~/in K, a 
proper subfield of L? It is not hard to show that the fol- 
lowing converse of Zippel 's  theorem holds: 

T HEOREM 11 (Landau [9]). Let a be an element of a field 
K. Suppose that ~ is of degree d over K,  and that ~ = 
,k/ (r with ,k in K and fl in k C K. Assume that the dth 
roots of unity lie in k. Then the field F = k (~ f i )  satisfies: (i) 
F over k is Galois and the Galois group of F over F n K is 
isomorphic to the group of F K  over K, (ii) F K  = K(~/-a), 
and (iii) k = F N K. 

Thus, if I seek a "Zippel denesting," I am asking to 
find subfields of K(~/-a) satisfying Theorem 11. In [10], 
there is a polynomial-t ime algorithm to find maximal 
subfields of a field. One can use this for an algorithm for 
determining whether  a Zippel denesting exists. The first 
step is to find all maximal subfields of L. 

It is a simple matter  to check if a field extension is 
Galois. One finds a primitive element for the larger field, 
possibly by resorting to the well-known construction that 
k(% p) = k(7+cp) for somec  ~ (degk(7) degk(p)) 2. With 
a primitive element, say a,  which has minimal polyno- 
mialp(x),  one can compute  the action of the Galois group 
by observing that the factorization 

p(x) = (x - pl (a))(x - p2(a) ) . . .  (x - pro(a)) 

gives the group table, since rYi(cej) = (pi (Pj(c~))  (mod 
p(x)). 

Computing whether  a candidate subfield satisfies 
parts (ii) and (iii) is even easier. It is just a matter of 
checking whether  two fields are equal. This can be done 
by seeing whether  the basis of one is contained in the 
other, and vice versa. Iterating the procedure in [10] will 
give an algorithm to find all subfields. Thus, there is an 
algorithm to determine if a "Zippel denesting" exists. 

It is not fast. There may  be 2 4 fields be tween  k and 
L, and in a worst  case I would  have to check each one 
of them. But this exponential-time algorithm can still be 
quite reasonable for small (< 10) values of d. 

Zippel used his theorem to shed some light on the 
calculations and theorems of Borodin, et al. [3]. Let a, b, 
and q be elements of a field k, and suppose  I am hoping 
to denest v/-a + by@ Assume there is a fl in k such that 

fl(a + bv/q ) = (ao + v'-q) 2. 

N o w  a 2 - qb 2, the norm of a + by@ is a square, d 2. This 
leads to 

= (a  + d) ,  a0 = 4- d) .  

Choosing the positive sign, 

4- - - 5 - - '  

where  the sign depends  on the sign of b. 
If a 2 - qb 2 is not a square, then that means that 

x/-gT-G-v~ does not denest  in a quadratic extension K = 
k(v,~ ), and I must  look for a quartic extension in which 
it denests. I try looking for a fl such that fl(av,~ + bq) is a 

perfect square. That computat ion eventually leads to 

1+ d) (~/4 ) -- 2(bq q(bq -4- d) 2 q- ~/(4q(bq + d)2) 3 @ 

These two denesting formulas are the two shown in [3] to 
be the only ways  in which expressions involving square 
roots can be denested. 

What About the General Case? 

Zippel 's  criteria are simple and elegant, but  the condi- 
tions in Theorems 10 and 11 are sufficiently restrictive 
that they will not handle all cases. Trying to unders tand 
where  the 9 came from in 

~/~'2 - 1 = ~y179 - ~/27-9 + ~7-9 ,  

I discovered the following subfields 4 of Q( 3 ~x/-~-7- 1): 

0 ( 3 3 ~ - 1 )  = 0 (~(/2, ~'-9 ) 

The denesting 

~/7~-0- 19 = ~ / ~ -  
led to a similar tower of fields: 

Q (V/7~/2-0 - 19) i Q (~/2-0, ~ - 8  ) 

In fact, such pictures arose for all the simplifications I 
had occasion to try. This was  too beautiful to happen by  
accident. A natural place to search for a denesting is the 
smallest closed field in which the minimal polynomial  
of a factors comple t e ly - -  the splitting field. The answer  
almost turned out  to be that surprisingly simple and el- 
egant. A minimal-depth expression for a nested radical 
can always be found in the splitting field, provided all roots 
of unity lie in the base field. More precisely: 

T H E O R E M  12 (Landau [81). Suppose a is a nested radical 
over k, where k is a field of characteristic 0 containing all 
roots of unity. Then there is a minimal-depth nesting of a with 
each of its terms lying in the splitting field of the minimal 
polynomial of a over k. 

4 This  d i a g r a m  gives  a part ial  exp lana t ion  of w h e r e  the 9 comes  f rom.  
A more  comple te  a n s w e r  is that  9 d iv ides  the  d i sc r iminan t  of x 9 + 

x 6 -~ x 3 - 1, the  min ima l  po lynomia l  of ~ / ~ ' ~  - 1 over  Q. 
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Proof. Consider the following diagram: 

normal closure of K / k  = L 

~ / ' J  ~ ~ 

L H : k ( a ) ~ ! G : G / N  / K  G = Galois group of L / k  

Let a be a nested radical over k, and suppose that L 
is the splitting field of k(a) over k. Let L be the normal 
closure of K over k, where K is a field which contains a 
minimal-depth nested expression for a. If I let G be the 
Galois group of L over k, and G be the group of L over 
k, then I note that G = G//V, where 19 is the group of L 
over L. (Note tha t /9  is normal because L is normal over 
L.) As c~ can be denested over L, there is a sequence of 
subgroups/~1, . . . , / t l  of G with G = H0 r>/~1 D' '"  D /~rl, 
with H~//ti+l abelian for i = 0 , . . . ,  I - 1, and H D Hz. 
This sequence can be pulled down to a sequence in 
G. If all roots of uni ty are in k, the tower defined by 
the groups can be made into a tower of radical exten- 
sions, thus showing there is a minimal-depth denesting 
in L. �9 

Of course, this does not solve the original problem, 
which was to denest  over an arbitrary field. Can one 
a priori add certain roots of unity to the base field so that 
a minimal-depth nesting can be achieved? The answer is 
yes, so long as one is careful in handling roots of unity. 

All roots of uni ty can be expressed in terms of radicals. 
The problem is that the depth of nesting of a root of 
unity can be very deep indeed. In general, a pth root 
of unity has nesting depth one more than the maximum 
of the nesting depths of the prime factors of p - 1. Thus, 
if there are arbitrarily long sequences of primes p, 2p + 
1,2(2p+ 1) + 1 , . . .  - -  a plausible, but unproved conjecture 
in number t h e o r y - - t h e n  an nth root of uni ty can have 
nesting depth log n. 

For me the motivation for s tudying the denesting of 
radicals was to develop an algorithm for radical simpli- 
fications. In many  applications, writing a root of unity as 
~,~ instead of the nested radical is a perfectly reasonable 
solution. This was the route taken here. But adding roots 
of unity to k does change the field in unexpected ways. 

By the Kronecker-Weber Theorem, every abelian ex- 
tension over Q can be embedded in a cyclotomic exten- 
sion. When I at tempt to write ~/a in Q(~z) I may  find that 

is an irrational number  which is already in Q(~z). Such 
is the case for v~  in the field Q(~5). Thus, v ~  will be rep- 
resented as a polynomial  in ~s, rather than the more usual 
expression v~. This type of simplification may  drop us 
a single level of nesting. A more serious problem is that 
writing a root of uni ty  as ~z in some sense masks it. There 
are subtle ways in which I pay for that. For example, 

~ /v~  - 5/2 = ~5 - 1/~5. symbol un- Which is easier to 

/ 

derstand: ~ /v~  - 5/2 or ~5 - 1/~5? That depends on the 
appl ica t ion--  or the mathematician. 

Taking these concerns into consideration, I find: 

THEOREM 13 (Landau [8]). Suppose a is a nested radical 
over k, where k is afield of characteristic O. Let L be the splitting 
field of k(a) over k, with Galois group G. Let l be the lcm of 
the exponents of the derived series of G, and let us write a 
primitive lth root of unity as ~l, and not simply as a nested 
radical. If there is a denesting of c~ such that each of the terms 
has depth no more than t, then there is a denesting of a over 
k(~l) with each of the terms having depth no more than t + 1 
and lying in L(~l). 

I also have an alternative version of this result in which 
I achieve minimal depth at the expense of adjoining a 
primitive rth root of unity, where r is dependent  on the 
presentation of the input. 

COROLLARY 14 [8]. Let k, c~, L, G, I, and t be as in Theo- 
rem 13. Let m be the lcm of the (mij ), where mij runs over all 
the roots appearing in the given nested expression for c~. Let r 
be the lcm of (m, l). Then there is a minimal-depth nesting of 
c~ over k( ~r ) with each of its terms lying in L( ~ ). 

These theorems tell us that the splitting field is the 
right place to look. They also lead naturally to an  algo- 
rithm. If I wish to denest the nested radical a, I begin by 
computing the minimal polynomial  of c~ over k. From 
that I construct the splitting field L of the minimal poly- 
nomial of a over k. Next I compute G = Gal(L/k).  We 
have already seen how to do these computations. What  
is the shortest sequence of nested radicals that will give 
c~? It will come from the shortest sequence of groups in 
the Galois group, the series of commutator  subgroups 
DiG, i = 1 , . . . ,  s, where DSG = {e}. Good algorithms 
for group computations have existed for over 15 years. 
Having a group table, or an equivalent, for G, it is not 
hard to compute the commutator  series of the group. 

Next I also compute 1, the lcm of the exponents of the 
derived series of G. For each i , i  = 1 , . . . ,  s, I compute 
D i - I G / D i G  =di l  x . . .  x ditl as a direct product of cyclic 
groups. Let,]ij = {e} x . . .  x {e} x dij x {e} x . . .  x {e}, 

~ 

and let Li = L D*c. Thus, for each i, Li = Li yi' ' ' '  Li &t~ 
is a composite of cyclic extensions of L~-I. For each i 

and d, I compute flij such that L~ *~ = Li-l(flij).  Thus, 

Li = L i - ,  (fli,,. �9 �9 3~t~). 
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I write K0 = k(~), where r is a primitive lth root of 
unity. Then Ki; = Ki- l ( f l i j )  can be written as a radi- 
cal extension of Ki-1,  and each Ki = K i l . . .  Ku, is a 
composite of radical extensions of Ki-1. The crux of the 
matter is how to write these extensions as radical ones, 
that is, Ki = Ki-1 ( d ~ ) .  This is achieved as follows. 

Following Artin, I construct a polynomial s~; (x) whose 
roots O~jl,..., Oij~j form a "normal" basis for Kij over 
Ki-1. The degree of 8ij(X) is rij = [Kij : Ki-l] ,  and 
its roots are linearly independent  over Ki-1. Then I 
use Lagrange resolvents to find a flij in Kij  such that 
K i j  = K i - l ( f l i j ) ,  where fiij satisfies an irreducible poly- 
nomial of the form xn*J - bij over Ki_~. That each of the 
extensions can be obtained as radical extensions stems 
from the fact that the appropriate roots of uni ty lie in the 
base field. 

This is just a brief sketch of the algorithm, details of 
which can be found in [8]. But the point should be clear: 
There is an algorithm for simplifying nested radicals, as- 
suming one allows roots of unity to creep into the ex- 
pression. 

How long does this take? Too long! If a is of degree n 
over k, its Galois group may be of size n! Even groups 
which are exponentially large (S,~, An, etc.) have a small 
set of generators, but  from a computational standpoint, 
that does not seem to help. No one knows how to de- 
termine the generators of a Galois group of a general 
polynomial without  first determining its splitting field. 
In general, computing the splitting field (that is, finding a 
minimal polynomial for a generator over the base field) 
is an exponential-time computation. Allowing roots of 
unity written in shorthand, Theorem 12 limits where I 
have to search if I am seeking a denesting. Nonetheless, 
except for radicals with small degrees, the computation 
is presently infeasible. Until there are improvements in 
algorithms for splitting field and Galois group compu- 
tations, the algorithms based on Theorems 12, 13, and 
Corollary 14 are useful only for nested radicals of small 
degree. 

Problem 1: Find a polynomial-time algorithm to com- 
pute the Galois group of an irreducible polynomial 
over Q. 

There is an improvement  one can make to Corollary 
14. Horng and Huang  [7] have shown: 

THEOREM 15 [7]. Let k, a, L, G, 1, and t be as in Theorem 
13. Let n be a natural number which is divisible by [L : k] and 
the discriminant of L over Q. Then there is a minimal-depth 
nesting of a over k( ~n ) with each of its terms lying in L( ~n ). 

In finding a root of unity to achieve minimal-depth 
nesting for a, they eliminate the need for including any- 
thing that relies on the presentation of a, as in Corollary 
14. However, they do so at the expense of introducing 
a dth root of unity, where the discriminant of L over Q 
divides d. This discriminant is of exponential size in a. 

Their algorithm for denesting follows the algorithm de- 
scribed earlier. 

The problem of simplification of nested radicals is far 
from completely solved. Because of B16mer we now can 
efficiently denest depth-2 real radicals. We do not have 
efficient algorithms for depth 3 or greater real nested 
radicals which achieve minimal-depth nestings. Thus, 
the following questions remain: 

Problem 2: Without a special encoding for roots of unity, 
given a nested radical, determine whether there is an- 
other nested radical of the same value, with lower nest- 
ing depth. 

Problem 3: Find such a lower nesting-depth radical. 

Problem 4: Given a real nested radical, determine 
whether there is another nested radical of the same value, 
of lower nesting depth. 
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